Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol).
نویسندگان
چکیده
The natural amino acid L-tyrosine is a major nutrient having a phenolic hydroxyl group. This feature makes it possible to use derivatives of tyrosine dipeptide as a motif to generate diphenolic monomers, which are important building blocks for the design of biodegradable polymers. Particularly useful monomers are desaminotyrosyl-tyrosine alkyl esters (abbreviated as DTR, where R stands for the specific alkyl ester used). Using this approach, a wide variety of polymers have been synthesized. Here, tyrosine-derived polycarbonates, polyarylates, and polyethers are reviewed with special emphasis on recent developments relating to cellular and in vivo responses, sterilization techniques, surface characterization, drug delivery, and processing and fabrication techniques. The commercial development of tyrosine-derived polycarbonates is most advanced, with one polymer, poly(DTE carbonate) (E=ethyl), being under review by the USA Federal Drug Administration.
منابع مشابه
Hydrophilic Polycarbonates: Promising Degradable Alternatives to Poly(ethylene glycol)-Based Stealth Materials
Poly(ethylene glycol) (PEG) represents the gold standard for stealth polymers in polymer-based therapeutic delivery. Unfortunately, PEG has some limitations which warrant the examination of alternative polymers. High molecular weight PEG (>40 kDa) can accumulate in tissue, and in some patients, PEG can provoke an immunological response and/or an accelerated blood clearance upon repeated exposur...
متن کاملSynthesis and Thermal Properties of Novel Biodegradable ABCBA Pentablock Copolymers from Poly (Ethylene glycol), L-Lactide and p-Dioxanone
In this work, new biodegradable ABCBA type pentablock copolymers with different mole ratio of L-lactide and PPDO-b-PEG-b-PPDO triblock copolymer were synthesized and characterized. In the first step, PPDO-b-PEG-b-PPDO triblock copolymer was synthesized via a ring-opening polymerization of P-DiOxanone (PDO) monomer with Poly (Ethylene Glycol) (P...
متن کاملDocetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-Vitro Characterization
Microwave irradiation was used to synthesize PEG-PCL and PEG-PLA copolymers that are composed of biodegradable polymers including PEG, PLA, and PCL. These copolymers were used for loading docetaxel in nanoparticles. Single emulsion-solvent evaporation technique was applied for preparing the PEG-PLA and PEG-PCL mixed nanoparticles (micelles and polymersomes) with different proportions, including...
متن کاملDocetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-Vitro Characterization
Microwave irradiation was used to synthesize PEG-PCL and PEG-PLA copolymers that are composed of biodegradable polymers including PEG, PLA, and PCL. These copolymers were used for loading docetaxel in nanoparticles. Single emulsion-solvent evaporation technique was applied for preparing the PEG-PLA and PEG-PCL mixed nanoparticles (micelles and polymersomes) with different proportions, including...
متن کاملSynthesis and Characterization of Fatty Acid/Amino Acid Self-Assemblies
In this paper, we discuss the synthesis and self-assembling behavior of new copolymers derived from fatty acid/amino acid components, namely dimers of linoleic acid (DLA) and tyrosine derived diphenols containing alkyl ester pendent chains, designated as "R" (DTR). Specific pendent chains were ethyl (E) and hexyl (H). These poly(aliphatic/aromatic-ester-amide)s were further reacted with poly(et...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced drug delivery reviews
دوره 55 4 شماره
صفحات -
تاریخ انتشار 2003